

Total Time: 2 Hours

MATHEMATICS (X)

Max. Marks: 100

SECTION "A" MULTIPLE CHOICE QUESTIONS

- NOTE: (i) Attempt all the questions of this section.
 - (ii) Do not copy down the questions, write only the answer against the proper number of the question and its part according to the question paper.
 - (iii) Each question carries (TWO) mark.

Q.1 Choose the best answer from the given options:	(50 Marks)
--	------------

- (i) $A \Delta B =$ _____.
 - a) $A \cap B$ b) $A \cup B$ c) $(A \cap B) (A \cup B)$ d) $(A \cup B) (A \cap B)$

(ii) The set of first three prime numbers is:

a) $\{2, 3, 5\}$ b) $\{1, 2, 3\}$ c) $\{1, 3, 5\}$ d) $\{1, 2, 7\}$

(iii) If x, y, z are real number and x = y, y = z then x = z, the property used is called ______. a) Transitive b) Trichotomy ______c) Symmetric d) Identity

(iv) $5^{3^2} \div 5^{2^3} =$ _____ a) 0 b) 1 c) 5 d) 25

(v)	The characteristics of log 0.00396 is					
	a) 3	b) 3	c) 2	d) 4		
(vi)	If $\log_2 x = 3$ then x will be equal to:					
	a) 6	b) 8	c) 10	d) 5		
(vii)	The natural logarithm has the base					
	a) <i>π</i>	b) e	c) 10	d) 0		

(viii) $(7 - \sqrt{2})(7 + \sqrt{2}) =$ a) 47 b) 1 c) 5 d) 48

(ix) The degree of polynomial
$$8x^2y^3 - 5x^2y^5 - x^3y^7$$
 is _____.
a) 5 b) 7 c) 3 d) 9

(x) The square root of $(a-b)^2$ is: a) $\pm (a-b)$ b) $\pm (a-b)(a+b)$ c) $\pm (a+b)$ d) none of these

(xi) The L.C.M of
$$x^3 - y^3$$
 and $x^6 - y^6$ is _____.
a) $x^3 - y^3$ b) $x^3 + y^3$ c) $x^6 + y^6$ d) $x^6 - y^6$

(xii) $ax^2 + bx + c = 0$, will remain quadratic equation, if a) $a \neq 0$ and b = c = 0b) a = 0 and $b \neq 0$, $c \neq 0$ c) $a \neq 0$ and c = 0d) Both (a) and (c)

(xiii) The solution set of
$$|2x+2| = -3$$
 is _____.
a) { } b) {3} c) {3, -3} d) {2, -2}

(xiv) If $\begin{bmatrix} 2 & 3 \\ 4 & p \end{bmatrix}$ is a singular matrix, then $p = \underline{\qquad}$. a) 2 b) 3 c) 4 d) 6

(xv) If
$$A = \begin{bmatrix} 2 & -3 \\ 4 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 9 & 4 \\ -2 & 7 \end{bmatrix}$, $A + B = \underline{\qquad}$.
a) $\begin{bmatrix} 2 & -3 \\ 4 & 5 \end{bmatrix}$ b) $\begin{bmatrix} 9 & 4 \\ -2 & 7 \end{bmatrix}$ c) $\begin{bmatrix} 11 & 1 \\ 2 & 12 \end{bmatrix}$ d) $\begin{bmatrix} 7 & -7 \\ -6 & 12 \end{bmatrix}$

(xvi) Eliminate "b" from a + 3b = -1, a + b = 3, then new relation is _____. a) a = 5 b) b = 5 c) b = 0 d) a = 3

(xvii)	The measure of each angle of an equilateral triangle is					
	a) 90°	b) 45°	c) 30°	d) 60°		
(xviii)) The complement of 40° is					
	a) 60°	b) 140°	c) 90°	d) 50°		
(xix)	The distance of any point of a circle from its centre is called its					
	a) Chord	b) Diameter	c) Tangent	d) Radius		
()	Sind Sector					
(xx)	$\sin\theta$. $\sec\theta =$	N 12 /	34			
	a) Tanθ	b) Cosθ	c) Cot θ	d) Cosecθ		
(xxi)	$1 + \tan^2 \theta = $	- 1.				
	a) $Sec^2\theta$	b) $Cot^2\theta$	c) $Sin^2\theta$	d) $\tan^2 \theta$		
(xxiii)	xiii) A triangle having no side congruent is calledtriangle.					
	a) Isosceles	b) Scalene	c) Acute	d) Right		
(xxiv)	<i>Sin</i> 30° =		10.			
	a) <i>Sin</i> 60°	b) <i>Cos</i> 60°	c) <i>Cos</i> 30°	d) <i>Sin</i> 30°		
(xxv)	The angle inscribed i	n a major arc is	angle.			
	a) Acute	b) 180°	c) Right	d) Acute		

<u>SECTION 'B' SHORT ANSWER QUESTIONS</u> (Marks: 30)

<u>NOTE</u>: Attempt any <u>SIX</u> parts from this section, selecting <u>ONE</u> part from each question.

All questions carry equal marks.

2. (i) If
$$U = \{x | x \in N \land 1 \le x \le 12\}$$
 A = $\{1, 2, 5, 9\}$ and B = $\{2, 3, 8, 9, 10\}$ prove that $A' \cup B' = (A \cap B)'$.

(ii) Simplify:
$$\left\{\frac{(125)^2 \times 8}{(64)^2}\right\}^{\frac{1}{3}}$$

- 3. (i) Solve with the help of logarithm: $\frac{\sqrt{431.5} \times (1.2)^2}{\sqrt[3]{36.98}}$ (ii) Find the value of $x^2 + y^2 + z^2$ when $x + y + z = \sqrt{7}$ and xy + yz + zx = 2
- 4. (i) Find the solution set of |5x-3|-6=3

(ii) What should be added to $4a^4 + 4a^3 + 5a^2 + 2a + 5$ to make it a perfect square?

5. (i) Find the solution set of the given equations by Cramer's Rule: 2x - 3y = 1, x + 4y = 6(ii) Eliminate "t" from the following equations: $\frac{x}{a} = \frac{1 + t^2}{2t}$, $\frac{y}{b} = \frac{1 - t^2}{2t}$

6. (i) Find the solution set of $x^2 + 10x - 24 = 0$ with the help of quadratic formula. (ii) Prove that: $\frac{\sin \theta}{1 + \cos \theta} + \frac{1 + \cos \theta}{\sin \theta} = 2\cos ec\theta$ 7. (i) Find the solution set of : $\sqrt{4x-5} = \sqrt{3x+7}$

9.

(ii) Find all the trigonometric ratios of the angle of 30° .

SECTION "C" (DESCRIPTIVE-ANSWER QUESTIONS) (Marks: 20)

NOTE: Attempt any TWO questions from this section. Including Q. 8 which is

compulsory. All questions carry equal marks.

- 8. Prove that the sum of the measures of the angles of a triangle is 180° .
 - Factorize any **FOUR** of the following: i. $x^4 + x^2 + 1$ ii. $12x^2 - 17xy + 6y^2$ iii. $y^4 + 2y^3z - 2yz^3 - z^4$ iv. $x^3 - x^2 + 2$ v. $a^6 - b^6$ vi. $64y^6 + \frac{64}{y^6} - 8y^9 + 96y^3$
- 10. If two lines intersect each other, then vertically opposite angles are congruent. Prove it.
- 11. Draw a triangle ABC such that $m\overline{AB} = 4.5$ cm, $m\overline{BC} = 5$ cm and $m \angle B = 60^{\circ}$. Write also the steps of construction.

